Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 15(6): 1137-40, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7593347

RESUMO

To investigate the adaptive mechanisms following carotid artery ligation in immature rats, histologic injury and tissue levels of ATP were compared after exposure to identical episodes of hypoxia induced either 3 or 24 h postligation. Histologic injury, assessed in both 9-day- and 23-day-postnatal animals after survival for 1 week, was markedly diminished in animals exposed to hypoxia 24 h postligation compared to that in animals exposed to hypoxia 3 h postligation. In 9-day-postnatal animals, ATP levels in the cerebral cortex ipsilateral to the ligation were depleted during hypoxia to 0.39 +/- 0.49 mmol/kg (mean +/- SD; N = 15) in animals exposed to hypoxia 3 h postligation but were maintained at 2.04 +/- 0.26 mmol/g (N = 18; p < 0.001) in animals exposed to hypoxia 24 h postligation. Thus, preservation of ATP may account for the diminution of cellular injury that results from delaying the onset of hypoxia from 3 to 24 h after carotid artery ligation in immature rats.


Assuntos
Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Isquemia Encefálica/metabolismo , Hipóxia/metabolismo , Envelhecimento/metabolismo , Anaerobiose , Animais , Animais Recém-Nascidos , Artéria Carótida Primitiva , Ligadura , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Plant J ; 4(1): 191-8, 1993 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8220472

RESUMO

Developing wild-type pea embryos contain two major isoforms of starch synthase and two isoforms of starch-branching enzyme. One of the starch synthases and both starch-branching enzymes occur both in the soluble fraction and tightly bound to starch granules. The other starch synthase, which is very similar to the waxy proteins of other species, is exclusively granule-bound., It is inactive when solubilized in a native form from starch granules, but activity is recovered when the SDS-denatured protein is reconstituted from polyacrylamide gels. Evidence is presented which indicates that all of these proteins become incorporated within the structure of the granule as it grows. It is proposed that the granule-bound waxy protein is active in vivo at the granule surface, whereas the remaining proteins are active in the soluble fraction of the amyloplast. The proteins become trapped within the granule matrix as the polymers they synthesize crystallize around them, and they probably play no further part in polymer synthesis.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Fabaceae/enzimologia , Isoenzimas/metabolismo , Plantas Medicinais , Sintase do Amido/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Sequência de Aminoácidos , Fabaceae/embriologia , Fabaceae/genética , Imuno-Histoquímica , Isoenzimas/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Solubilidade , Sintase do Amido/genética
3.
Planta ; 186(1): 122-6, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24186584

RESUMO

The free-pool sizes of amino acids involved in photorespiratory metabolism have been determined in leaves of Moricandia species during the post-illumination CO2 burst. The kinetics of the burst and the time to attainment of steady-state rates of dark respiration were much slower in the C3-C4 intermediate species Moricandia arvensis (L.) DC than in the C3 species Moricandia moricandioides (Boiss.) Heywood. When plants were equilibrated at a high photon flux density (PFD; 1200 µmol · m(-2) · s(-1) PAR) the glycine and serine pool sizes in leaves of M. arvensis were 1.9 and 1.4 µmol · mg(-1) phaeophytin, respectively, values which were twice those in leaves of M. moricandioides. Amounts of glycine and serine were smaller at a lower PFD (150 µmol · m(-2) · s(-1)) but were still twice as large in M. arvensis. Amounts of other amino acids involved in photorespiration or background cell metabolism (glutamate/glutamine, alanine, valine and threonine) were comparable in both species and did not respond to irradiance or change markedly during the dark burst. In contrast, during the first minute of the post-illumination burst the glycine pool in the leaves of both species had declined by at least 60%. It continued to decline, reaching 6-7 % of the level in the light by the time steady-state rates of dark respiration had been established. The rate of disappearance of glycine was comparable in both species and therefore depletion to steady-state dark levels took longer in M. arvensis than in M. moricandioides (8.4 and 4.6 min, respectively). These data indicate that almost all of the glycine pool in the leaves of C3 and C3-C4 Moricandia species is a consequence of photorespiratory metabolism. The significance of a large but readily metabolised pool of glycine in the leaves of M. arvensis is discussed.

4.
Plant Physiol ; 91(3): 1219-25, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16667135

RESUMO

The distribution of glycine decarboxylase (GDC) in leaves of pea (Pisum sativum L.) and wheat (Triticum aestivum L.) has been investigated using immunogold labeling of the P-protein subunit of the GDC complex. Mitochondria in photosynthetic mesophyll cells were densely labeled, whereas those in nonphotosynthetic vascular parenchyma and epidermal cells were only weakly labeled. In pea leaves the density of immunogold labeling on mitochondria in the chloroplast-containing bundle sheath and stomatal guard cells was intermediate between that in mesophyll and epidermal cells. In both species the density of labeling on mitochondria in a cell appeared to reflect the photosynthetic capacity of the cell. This relationship was further examined in wheat where a natural developmental gradient exists along the lamina such that cell maturity increases with distance from the basal meristem. In this case the density of labeling on mesophyll cell mitochondria increased with photosynthetic development and with increasing maturity of the cell. Vascular cell mitochondria, however, became less densely labeled as the cells matured. The results indicate a close, positive correlation between the concentration of GDC in the mitochondria and the photosynthetic status of the host cell. This relationship is maintained effectively under the influence of both spatial (i.e. cellular differentiation across the lamina) and temporal (i.e. cellular development along the lamina) constraints.

5.
Plant Physiol ; 89(3): 982-5, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16666652

RESUMO

The aim of this work was to discover the extent of interference by phosphoenolpyruvate (PEP) phosphatase in spectrophotometric assays of PEP carboxylase (EC 4.1.1.31) in crude extracts of plant organs. The presence of PEP phosphatase and lactate dehydrogenase (EC 1.1.1.27) in extracts leads to PEP-dependent NADH oxidation that is independent of PEP carboxylase activity, and hence to overestimation of PEP carboxylase activity. In extracts of three organs of pea (Pisum sativum L.: leaves, developing embryos, and Rhizobium nodules), two organs of wheat (Triticum aestivum L.: developing grain and endosperm), and leaves of Moricandia arvensis (L.) D.C., lactate dehydrogenase activity was at most only 16% of that of PEP carboxylase at the pH optimum for PEP carboxylase activity. Endogenous PEP phosphatase and lactate dehydrogenase are thus unlikely to interfere seriously with the assay for PEP carboxylase at its optimum pH. Addition of lactate dehydrogenase to PEP carboxylase assays- a proposed means of correcting for nonenzymic decarboxylation of oxaloacetate to pyruvate-resulted in increases in PEP-dependent NADH oxidation from zero (Rhizobium nodules) to 131% (wheat grains). There was no obvious relationship between the magnitude of this increase and conditions in the assay that might promote oxaloacetate decarboxylation. However, the magnitude of the increase was highly positively correlated with the activity of PEP phosphatase in the extract. Addition of lactate dehydrogenase to PEP carboxylase assays can thus result in very large overestimations of PEP carboxylase activity, and should only be used as a means of correction for oxaloacetate decarboxylation for extracts with negligible PEP phosphatase activity.

6.
Planta ; 176(4): 527-32, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24220949

RESUMO

In order to study the location of enzymes of photorespiration in leaves of the C3-C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.

7.
Planta ; 175(4): 452-9, 1988 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24221925

RESUMO

Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3-C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3-C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3-C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3-C4 intermediate species.

8.
Planta ; 173(3): 298-308, 1988 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24226536

RESUMO

Photorespiratory metabolism of the C3-C4 intermediate species Moricandia arvensis (L.) DC has been compared with that of the C3 species, Moricandia moricandioides (Boiss.) Heywood. Assays of glycollate oxidase (EC 1.1.3.1), glyoxylate aminotransferases (EC 2.6.1.4, EC 2.6.1.45) and hydroxypyruvate reductase (EC 1.1.1.29) indicate that the capacity for flux through the photorespiratory cycle is similar in both species. Immunogold labelling with monospecific antibodies was used to investigate the cellular locations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), glycollate oxidase, and glycine decarboxylase (EC 2.1.2.10) in leaves of the two species. Ribulose 1,5-bisphosphate carboxylase/oxygenase was confined to the stroma of chloroplasts and glycollate oxidase to the peroxisomes of all photosynthetic cells in leaves of both species. However, whereas glycine decarboxylase was present in the mitochondria of all photosynthetic cells in M. moricandioides, it was only found in the mitochondria of bundle-sheath cells in M. arvensis. We suggest that localized decarboxylation of glycine in the leaves of M. arvensis will lead to improved recapture of photorespired CO2 and hence a lower rate of photorespiration.

9.
Planta ; 168(1): 130-8, 1986 May.
Artigo em Inglês | MEDLINE | ID: mdl-24233745

RESUMO

The aim of this work was to discover whether oxygen tensions in the roots of marsh plants in flooded soils are high enough to allow fully acrobic metabolism. Activity of alcohol dehydrogenase (ADH), a protein synthesised in anoxic plants, was measured in roots of marsh plants growing in habitats where the availability of oxygen to the roots would be expected to differ. Roots of Carex riparia in standing water had ADH activities about 2.5 times higher than those of phosphofructokinase, and comparable to ADH activities of Poa trivialis, Urtica dioica and Ranunculus repens roots in dry soil. Removal of the oxygen supply via aerenchyma to Carex roots caused a 30-fold increase in ADH activity relative to that of phosphofructokinase. There was no change in ADH activity with depth in Carex roots in waterlogged soil, but in Filipendula ulmaria roots activity was 14 times higher below 10 cm depth than near the surface. Urtica roots in waterlogged soil had alcohol dehydrogenase activities 26 times higher than roots in dry soil, but for Poa and Ranunculus roots this figure was only 1.7 and 4.2, respectively. These results indicate that the oxygen tensions in the roots of marsh plants in waterlogged soil differ considerably among species. Ethanol was the major product of fermentation in roots of all species studied. There was no correlation between ADH activity and the rate of ethanol production under anoxia of Urtica roots. The physiological significance of high ADH activities in roots is thus unclear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...